Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group

by Christian U. Grünanger and Bernhard Breit

Angew. Chem. Int. Ed. 2008, 47, early view

Karla Bravo *Current Literature* 08/30/2008

Hydroformylation of olefins. An industrial atom-economic C/C-bond forming reaction

Important industrial process for the production of aldehydes and ketones: > 7 million tons of oxo products/year. Based on homogeneous catalysis: $HCo(CO)_4$ (Otto Roelen, 1938), rhodium(I)complexes, RhH(CO)(PPh₃)₃ (Wilkinson, 1968).

✓ Linear-selective hydroformylation of terminal alkenes, Ligands (L): BISBI, XANTPHOS.

Synthetic challenge: Control of Branched-Regioselectivity

- *No* catalyst is known for a general branched-selective hydroformylation of terminal and internal alkenes.
- Simultaneous control of both, enantio- and regioselectivity in enantioselective hydroformylations has not yet been achieved.

Efforts have been directed towards the development of a Substrate-Directed Reaction

Breit, B. Acc. Chem. Res. 2003, 36, 264-275

Towards the development of a branched-regioselective hydroformylation reaction...

Use of substrate-bound directing groups (stoichiometric amounts): phosphite and phosphine groups

• Chelation-control by phosphite esters in cyclic and acyclic homoallylic systems.

 Identification of o-DPPB esters (ortho-(diphenylphosphanyl) benzoyl) as efficient catalyst-directing groups (CDG) in the branched-selective hydroformylation of allylic esters.

The concept of using catalytic amounts of a directing group to control regioselectivity

By Self-Assembly

Use of catalytic amounts of a directing group

• Supramolecular catalyst strategies

(a) Encapsulated rhodium catalyst

non-encansulapted cat. (I/b = 2.8)encansulapted cat. (I/b = 0.6, 63% b)

non-encapsulated cat. (25 °C): 17% conv., 2 (55.6%), 3 (43.8%) (80°C): 61% conv., 2 (53.3%), 3 (22.4%)

encapsulated cat.

CHO.

Conditions: $[Rh(acac)(CO)_2] = 0.7 \text{ mmol/L}$, toluene, P(H₂/CO) =10 bar, substrate/Rh = 1052, [phosphorus] = 6.4 mmol/L h

Reek, J. N. H. et al. J. Am. Chem. Soc. 2006, 128, 11344-11345. Reek, J. N. H. et al. Chem. Eur. J. 2006, 12, 4218 – 4227.

The concept of using catalytic amounts of a directing group to control regioselectivity

(b) Mix. guanidine-phosphine based supramolecular ligand

Title Paper: "Use of catalytic amounts of phosphinites as reversible-bound directing groups for bit the branched regioselective hydroformylation of homoallylic alcohols"

Why phosphinites?

o Reversible exchange with phenols and alcohols in the presence of basic or acidic catalysts.

Bedford, R. B. et al. Angew. Chem. Int. Ed. 2003, 42, 112-114.

Hypothesis: "Attachment of a PR₂ group to the OH group of an homoallylic alcohol might allow the formation of a six- versus seven-membered chelate, which should favor the branched aldehyde product."

Optimization of the branched-regioselective hydroformylation using catalytic amounts of phosphinites as CDG (CDG = catalyst directing group).

но^^		[Rh(CO) ₂ acac] (1 mol%) ligand (10 mol%) CO/H ₂ (1:1, 20 bar) 40°C, 20 h		OH O C C C C C C O OH C C O OH C C OH		Ligands: Ph ₂ P ₀ Ph ₂ POMe	
Entry	Ligand	Additive	Solvent	Conv. [%] ^[a]	Regioselectivity ^[a] (γ:δ)		
1	2	tetrazole 10 mol %	toluene	66 ^[b]	46:54		
2	2	Cs₂CO₃ 10 mol%	toluene	24	45:55		
3	2	K₃PO₄ 10 mol%	toluene	36	41:59		
4	2	LiCl 10 mol%	toluene	62	99:1		
5	2	LiCl 1 mol%	THF	11	99:1		
6	2	LiCl 0.1 mol% MS (4 Å) ^[d]	THF	99	97:3		
7	3	MS (4 Å)	THF	99 ^[c]	99:1		

[a] Determined by GC. [b] Conversion after 6 h. [c] Complete conversion was reached after 6 h. [d] MS = molecular sieve.

Title Paper: Phosphinites do the trick

Development of the position-selective hydroformylation of homoallylic alcohols using a catalytic amount of a CDG

НО	[Rh(CO) ₂ acac] (1 mol%) Ph ₂ POMe (3) (10 mol%) CO/H ₂ (1:1, 20 bar) THF, MS 4A, 40 °C, 12 h	OH C R + C R H	PCC/Al ₂ O ₃ (2 equiv) NaOAc (0.5 equiv) CH ₂ Cl ₂ , rt, 12 h		+ (0,0) R
entry	substrate	major product	conv. [%] ^a	yield lactones [%] ^b	regioselectivity ^c (γ:δ)
1	HO		100	91	99 : 1 (27 : 73)
2	HO		100	85	>99 : < 1 (54 : 46)
3	HO		100	88	>99 : < 1 (52 : 48)
4	HO		98	84	97 : 3 (65 : 35)
5	НО		84	92	99 : 1 (45 : 55)
6	HO	0 0 <i>n</i> -Pent	81	83	97 : 3 (28: 72)

[a] Conversion determined by GC after hydroformylation. [b] Yields based on conversion of hydroformylation step. [c] Regioselectivity of the hydroformylation reaction determined at the stage of the lactols by GC and reconfirmed by NMR spectroscopy after oxidation to the corresponding lactones. In brackets: Regioselectivity of the hydroformylation with 10 mol% PPh3 as the ligand under otherwise identical conditions.

[a] Conversion determined by GC after hydroformylation. [b] Yields based on conversion of hydroformylation step. [c] Regioselectivity of the hydroformylation reaction determined at the stage of the lactols by GC and reconfirmed by NMR spectroscopy after oxidation to the corresponding lactones. In brackets: Regioselectivity of the hydroformylation with 10 mol% PPh3 as the ligand under otherwise identical conditions.

Title Paper: Plausible catalytic cycle...

3 is a catalyst-directing group (CDG) operating through reversible substrate- and catalyst-binding

✓ Phosphinites work as reversibly bound catalyst-directing groups in catalytic amounts for the branchedregioselective hydroformylation of homoallylic alcohols with terminal alkenes, and position-selective hydroformylation of internal alkenes.

 \checkmark The present methodology provides an efficient entry to γ -lactols and -lactones, which are useful synthetic building blocks.

x Limited to a particular functionality (O-heteroatom): homoallylic alcohols.

- Future work:
- Control of diastereo- and enantioselectivity in branched-regioselective hydroformylation reactions.